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Abstract

One of the most challenging topics in Nat-
ural Language Processing (NLP) is visually-
grounded language understanding and reason-
ing. Outdoor vision-and-language navigation
(VLN) is such a task where an agent fol-
lows natural language instructions and navi-
gates a real-life urban environment. Due to
the lack of human-annotated instructions that
illustrate intricate urban scenes, outdoor VLN
remains a challenging task to solve. This pa-
per introduces a Multimodal Text Style Trans-
fer (MTST) learning approach and leverages
external multimodal resources to mitigate data
scarcity in outdoor navigation tasks. We first
enrich the navigation data by transferring the
style of the instructions generated by Google
Maps API, then pre-train the navigator with
the augmented external outdoor navigation
dataset. Experimental results show that our
MTST learning approach is model-agnostic,
and our MTST approach significantly outper-
forms the baseline models on the outdoor VLN
task, improving task completion rate by 8.7%
relatively on the test set. 1

1 Introduction

A key challenge for Artificial Intelligence research
is to go beyond static observational data and con-
sider more challenging settings that involve dy-
namic actions and incremental decision-making
processes (Fenton et al., 2020). Outdoor vision-
and-language navigation (VLN) is such a task,
where an agent navigates in an urban environment
by grounding natural language instructions in vi-
sual scenes, as illustrated in Fig. 1. To generate a
series of correct actions, the navigation agent must
comprehend the instructions and reason through
the visual environment.

1Our code and dataset is released at https://github.
com/VegB/VLN-Transformer.

Google Maps API Vanderbilt Ave turns right and becomes E 43rd St.

Speaker
You ' ll have a red brick building with a red awning 
on your right . Go forward until you reach the next 
intersection , and turn right.

MTST model Turn right again and stop just past the orange and 
white construction barriers.

Orient yourself so that the red deli awning is on your right. 
Turn left at the intersection.

Figure 1: An outdoor VLN example with instructions
generated by Google Maps API (ground truth), the
Speaker model, and our MTST model. Tokens marked
in red indicate incorrectly generated instructions, while
the blue tokens suggest alignments with the ground
truth. The orange bounding boxes show that the objects
in the surrounding environment have been successfully
injected into the style-modified instruction.

Different from indoor navigation (Anderson
et al., 2018; Wang et al., 2018; Fried et al., 2018;
Wang et al., 2019; Ma et al., 2019a; Tan et al., 2019;
Ma et al., 2019b; Ke et al., 2019), the outdoor navi-
gation task takes place in urban environments that
contain diverse street views (Mirowski et al., 2018;
Chen et al., 2019; Mehta et al., 2020). The vast ur-
ban area leads to a much larger space for an agent to
explore and usually contains longer trajectories and
a wider range of objects for visual grounding. This
requires more informative instructions to address
the complex navigation environment. However, it
is expensive to collect human-annotated instruc-
tions that depict the complicated visual scenes to
train a navigation agent. The issue of data scarcity
limits the navigator’s performance in the outdoor
VLN task.

To deal with the data scarcity issue, Fried et al.
(2018) proposes a Speaker model to generate addi-
tional training pairs. However, synthesizing instruc-
tions purely from visual signals is hard, especially
for outdoor environments, due to visual complexity.

https://github.com/VegB/VLN-Transformer
https://github.com/VegB/VLN-Transformer


On the other hand, template-based navigation in-
structions on the street view can be easily obtained
via the Google Map API, which may serve as addi-
tional learning signals to boost outdoor navigation
tasks. But instructions generated by Google Maps
API mainly consist of street names and directions,
while human-annotated instructions in the outdoor
navigation task frequently refer to street-view ob-
jects in the panorama. The distinct instruction style
hinders the full utilization of external resources.

Therefore, we present a novel Multimodal Text
Style Transfer (MTST) learning approach to nar-
row the gap between template-based instructions
in the external resources and the human-annotated
instructions for the outdoor navigation task. It can
infer style-modified instructions for trajectories in
the external resources and thus mitigate the data
scarcity issue. Our approach can inject more visual
objects in the navigation environment to the instruc-
tions (Fig. 1), while providing direction guidance.
The enriched object-related information can help
the navigation agent learn the grounding between
the visual environment and the instruction.

Moreover, different from previous LSTM-based
navigation agents, we propose a new VLN Trans-
former to predict outdoor navigation actions. Ex-
perimental results show that utilizing external re-
sources provided by Google Maps API during
the pre-training process improves the navigation
agent’s performance on Touchdown, a dataset for
outdoor VLN (Chen et al., 2019). In addition, pre-
training with the style-modified instructions gen-
erated by our multimodal text style transfer model
can further improve navigation performance and
make the pre-training process more robust. In sum-
mary, the contribution of our work is four-fold:

• We present a new Multimodal Text Style
Transfer learning approach to generate style-
modified instructions for external resources
and tackle the data scarcity issue in the out-
door VLN task.

• We provide the Manh-50 dataset with style-
modified instructions as an auxiliary dataset
for outdoor VLN training.

• We propose a novel VLN Transformer model
as the navigation agent for outdoor VLN and
validate its effectiveness.

• We improve the task completion rate by 8.7%
relatively on the test set for the outdoor VLN

task with the VLN Transformer model pre-
trained on the external resources processed by
our MTST approach.

2 Related Work

Vision-and-Language Navigation (VLN) is a
task that requires an agent to achieve the final goal
based on the given instructions in a 3D environ-
ment. Besides the generalizability problem studied
by previous works (Wang et al., 2018, 2019; Tan
et al., 2019; Zhang et al., 2020), the data scarcity
problem is another critical issue for the VLN task,
expecially in the outdoor environment(Chen et al.,
2019; Mehta et al., 2020; Xiang et al., 2020). Fried
et al. (2018) obtains a broad set of augmented
training data for VLN by sampling trajectories in
the navigation environment and using the Speaker
model to back-translate their instructions. However,
the Speaker model might cause the error propaga-
tion issue since it is not trained on large corpora
to optimize generalization. While most existing
works select navigation actions dynamically along
the way in the unseen environment during testing,
Majumdar et al. (2020) proposes to test in previ-
ously explored environments and convert the VLN
task to a classification task over the possible paths.
This approach performs well in the indoor setting,
but is not suitable for outdoor VLN where the envi-
ronment graph is different.
Multimodal Pre-training has attracted much
attention to improving multimodal tasks perfor-
mances. The models usually adopt the Transformer
structure to encode the visual features and the tex-
tual features (Tan and Bansal, 2019; Lu et al., 2019;
Chen et al., 2020; Sun et al., 2019; Li et al., 2019;
Huang et al., 2020b; Luo et al., 2020; Li et al.,
2020; Zheng et al., 2020; Wei et al., 2020; Tsai
et al., 2019). During pre-training, these models use
tasks such as masked language modeling, masked
region modeling, image-text matching to learn the
cross-modal encoding ability, which later bene-
fits the multimodal downstream tasks. Majumdar
et al. (2020) proposes to use image-text pairs from
the web to pre-train VLN-BERT, a visiolinguis-
tic transformer-based model similar to the model
proposed by Lu et al. (2019).

A concurrent work by Hao et al. (2020) pro-
poses to use Transformer for indoor VLN. Our
VLN Transformer is different from their model in
several key aspects: (1) The pre-training objectives
are different: Hao et al. (2020) pre-trains the model



on the same dataset for training, while we create
an augmented, stylized dataset for outdoor VLN
using the proposed MTST method. (2) Benefiting
from the effective external resource, a simple navi-
gation loss is employed in our VLN Transformer,
while they adopt the masked language modeling to
better train their model. (3) Model-wise, instead
of encoding the whole instruction into one feature,
we use sentence-level encoding since Touchdown
instructions are much longer than R2R instructions.
(4) We encode the trajectory history, while their
model encodes the panorama for the current step.
Unsupervised Text Style Transfer is an approach
to mitigate the lack of parallel data for supervised
training. One line of work encodes the text into
a latent vector and manipulate the text representa-
tion in the latent space to transfer the style. Shen
et al. (2017); Hu et al. (2017); Yang et al. (2018)
use variational auto-encoder to encode the text,
and use a discriminator to modify text style. John
et al. (2019); Fu et al. (2018) rely on models with
encoder-decoder structure to transfer the style. An-
other line of work enriches the training data by gen-
erating pseudo-parallel data via back-translation
(Artetxe et al., 2018; Lample et al., 2018b,a; Zhang
et al., 2018).

3 Methods

3.1 Task Definition

In the vision-and-language navigation task, the rea-
soning navigator is asked to find the correct path to
reach the target location following the instructions
(a set of sentences) X = {s1, s2, . . . , sm}. The
navigation procedure can be viewed as a series of
decision making processes. At each time step t,
the navigation environment presents an image view
vt. With reference to the instruction X and the
visual view vt, the navigator is expected to choose
an action at ∈ A. The action set A for urban envi-
ronment navigation usually contains four actions,
namely turn left, turn right, go forward, and stop.

3.2 Overview

Our Multimodal Text Style Transfer (MTST) learn-
ing mainly consists of two modules, namely the
multimodal text style transfer model and the VLN
Transformer. Fig. 2 provides an overview of our
MTST approach. We use the multimodal text
style transfer model to narrow the gap between
the human-annotated instructions for the outdoor
navigation task and the machine-generated instruc-

Source Instruction

Google Maps API
Head northwest on E 23rd St toward 2nd Ave.
Turn left at the 2nd cross street onto 3rd Ave.

Human Annotator

Orient yourself so you are facing the same as
the traffic on the 4 lane road. Travel down this
road until the first intersection. Turn left and go
down this street with the flow of traffic. You’ll
see a black and white stripped awning on your
right as you travel down the street.

Table 1: For the outdoor VLN task, the instructions pro-
vided by Google Maps API is distinct from the instruc-
tions written by human annotators.

tions in the external resources. The multimodal
text style transfer model is trained on the dataset
for outdoor navigation, and it learns to infer style-
modified instructions for trajectories in the external
resources. The VLN Transformer is the naviga-
tion agent that generates actions for the outdoor
VLN task. It is trained with a two-stage training
pipeline. We first pre-train the VLN Transformer
on the external resources with the style-modified
instructions and then fine-tune it on the outdoor
navigation dataset.

3.3 Multimodal Text Style Transfer Model

Instruction Style The navigation instructions vary
across different outdoor VLN datasets. As shown
in Table 1, the instructions generated by Google
Maps API is template-based and mainly consists
of street names and directions. In contrast, human-
annotated instructions for the outdoor VLN task
emphasize the visual environment’s attributes as
navigation targets. It frequently refers to objects in
the panorama, such as traffic lights, cars, awnings,
etc. The goal of conducting multimodal text style
transfer is to inject more object-related information
in the surrounding navigation environment to the
machine-generated instruction while keeping the
correct guiding signals.
Masking-and-Recovering Scheme The multi-
modal text style transfer model is trained with a
“masking-and-recovering" (Zhu et al., 2019; Liu
et al., 2019; Donahue et al., 2020; Huang et al.,
2020a) scheme to inject objects that appeared in
the panorama into the instructions. We mask out
certain portions in the instructions and try to re-
cover the missing contents with the help of the
remaining instruction skeleton and the paired tra-
jectory. To be specific, we use NLTK (Bird et al.,
2009) to mask out the object-related tokens in the
human-annotated instructions, and the street names
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Figure 2: An overview of the Multimodal Text Style Transfer (MTST) learning approach for vision-and-language
navigation in real-life urban environments. Details are described in Section 3.2.

Multimodal Text Style Transfer Model Multimodal Text Style Transfer Model

[MASK] so that the [MASK] is on [MASK] 
right. Turn left at the [MASK].

Training on Outdoor VLN Dataset 
with Human-Annotated Instructions

Masking

Recovering

[MASK] on [MASK] toward [MASK].  
[MASK] right onto [MASK].

Inference on External Resource

Transferring 
Text Style

Go straight. There will be a red wall to your right. Take a right. Stop at the intersection. Head down the street with traffic on your right. Turn right onto the street.

Orient yourself so that the red deli awning is 
on your right. Turn left at the intersection.

Head southwest on 5th Ave toward E 49th 
St. Turn right onto W 47th St.

Masking

Figure 3: An example of the training and inference process of the multimodal text style transfer model. During
training, we mask out the objects in the human-annotated instructions to get the instruction template. The model
takes both the trajectory and the instruction skeleton as input, and the training objective is to recover the instructions
with objects. When inferring new instructions for external trajectories, we mask the street names in the original
instructions and prompt the model to generate new object-grounded instructions.

in the machine-generated instructions2. Multiple
tokens that are masked out in a row will be replaced
by a single [MASK] token. We aim to maintain
the correct guiding signals for navigation after the
style transfer process. Tokens that provide guiding
signals, such as “turn left" or “take a right", will not
be masked out. Fig. 3 provides an example of the
“masking-and-recovering" process during training
and inferring.
Model Structure Fig. 3 illustrates the input and
expected output of our multimodal text style trans-
fer model. We build the multimodal text style trans-
fer model upon the Speaker model proposed by
Fried et al. (2018). On top of the visual-attention-
based LSTM (Hochreiter and Schmidhuber, 1997)
structure in the Speaker model, we inject the tex-
tual attention of the masked instruction skeleton X ′
to the encoder, which allows the model to attend to
original guiding signals.

The encoder takes both the visual and textual
inputs, which encode the trajectory and the masked
instruction skeletons. To be specific, each visual
view in the trajectory is represented as a feature
vector v′ = [v′v;v

′
α], which is the concatenation

2We masked out the tokens with the following part-of-
speech tags: [JJ, JJR, JJS, NN, NNS, NNP, NNPS, PDT, POS,
RB, RBR, RBS, PRP$, PRP, MD, CD]

of the visual encoding v′v ∈ R512 and the orien-
tation encoding v′α ∈ R64. The visual encoding
v′v is the output of the last but one layer of the
RESNET18 (He et al., 2016) of the current view.
The orientation encoding v′α encodes current head-
ing α by repeating vector [sinα, cosα] for 32 times,
which follows Fried et al. (2018). As described in
section 3.4, the feature matrix of a panorama is the
concatenation of eight projected visual views.

In the multimodal style transfer encoder, we use
a soft-attention module (Vaswani et al., 2017) to
calculate the grounded visual feature v̂t for current
view at step t:

attnvt,i = softmax((Wvht−1)
Tv′i) (1)

v̂t =

8∑
i=1

= attnvt,iv
′
i (2)

where ht−1 is the hidden context of previous step,
Wv refers to the learnable parameters, and attnvt,i
is the attention weight over the ith slice of view v′i
in current panorama.

We use full-stop punctuations to split the input
text into multiple sentences. The rationale is to
enable alignment between the street views and the
semantic guidance in sub-instructions. For each
sentence in the input text, the textual encoding s′



is the average of all the tokens’ word embedding in
the current sentence. We also use a soft-attention
modules to calculate the grounded textual feature
ŝt at current step t:

attnst,j = softmax((Wsht−1)
Ts′j) (3)

ŝt =

M∑
j=1

attnst,js
′
j (4)

where Ws refers to the learnable parameters,
attnst,j is the attention weight over the jth sen-
tence encoding s′j at step t, and M denotes the
maximum sentence number in the input text. The
input text for the multimodal style transfer encoder
is the instruction template X ′.

Based on the grounded visual feature v̂t, the
grounded textual feature ŝt and the visual view fea-
ture v′t at current timestamp t, the hidden context
can be given as:

ht = LSTM([v̂t; ŝt;v
′
t]) (5)

Training Objectives We train the multimodal text
style transfer model in the teacher-forcing man-
ner (Williams and Zipser, 1989). The decoder gen-
erates tokens auto-regressively, conditioning on the
masked instruction template X ′, and the trajectory.
The training objective is to minimize the following
cross-entropy loss:

L(x1, x2, . . . , xn|X ′,v′1, . . . ,v′N )

= − log

n∏
j=1

P (xj |x1, ..., xj−1,X ′,v′1, . . . ,v′N ) (6)

where x1, x2, . . . , xn denotes the tokens in the orig-
inal instruction X , n is the total token number in
X , and N denotes the maximum view number in
the trajectory.

3.4 VLN Transformer
The VLN Transformer is the navigation agent that
generates actions in the outdoor VLN task. As illus-
trated in Fig. 4, our VLN Transformer is composed
of an instruction encoder, a trajectory encoder, a
cross-modal encoder that fuses the modality of the
instruction encodings and trajectory encodings, and
an action predictor.
Instruction Encoder The instruction encoder is
a pre-trained uncased BERT-base model (Devlin
et al., 2019). Each piece of navigation instruc-
tion is split into multiple sentences by the full-
stop punctuations. For the ith sentence si =

Orient yourself so that  

the red deli awning is on  

your rig
ht.

Go forward.

Turn left a
t th

e intersection.

Go straight until y
ou see a  

parking garage on your rig
ht.

Instruction Encoder View Encoder

Cross-Modal Encoder

Action Predictor

TURN LEFT

hs1 hs2 hs3 hs4 hv1 hv2 hv3

os1 os2 os3 os4 ov1 ov2 ov3

concat

t = 1 t = 2 t = 3

?

Figure 4: Overview of the VLN Transformer. In this
example, the VLN Transformer predicts to take a left
turn for the visual scene at t = 3.

{xi,1, xi,2, . . . , xi,li} that contains li tokens, its sen-
tence embedding hsi is calculated as:

wi,j = BERT (xi,j) ∈ R768 (7)

hsi = FC(
∑li

j=1wi,j

li
) ∈ R256 (8)

where wi,j is the word embedding for xi,j gener-
ated by BERT, and FC is a fully-connected layer.
View Encoder We use the view encoder to re-
trieve embeddings for the visual views at each time
step. Following Chen et al. (2019), we embed
each panorama It by slicing it into eight images
and projecting each image from an equirectangu-
lar projection to a perspective projection. Each
of the projected image of size 800 × 460 will be
passed through the RESNET18 (He et al., 2016)
pre-trained on ImageNet (Russakovsky et al., 2015).
We use the output of size 128 × 100 × 58 from
the fourth to last layer before classification as
the feature for each slice. The feature map for
each panorama is the concatenation of the eight
image slices, which is a single tensor of size
128×100×464. We center the feature map accord-
ing to the agent’s heading αt at timestamp t. We
crop a 128× 100× 100 sized feature map from the
center and calculate the mean value along the chan-
nel dimension. The resulting 100 × 100 features
is regarded as the current panorama feature Ît for
each state. Following Mirowski et al. (2018), we
then apply a three-layer convolutional neural net-
work on Ît to extract the view features hvt ∈ R256

at timestamp t.
Cross-Modal Encoder In order to navigate
through complicated real-world environments, the
agent needs to grasp a proper understanding of
the natural language instructions and the visual
views jointly to choose proper actions for each
state. Since the instructions and the trajectory



lies in different modalities and are encoded sep-
arately, we introduce the cross-modal encoder to
fuse the features from different modalities and
jointly encode the instructions and the trajectory.
The cross-modal encoder is an 8-layer Transformer
encoder (Vaswani et al., 2017) with mask. We use
eight self-attention heads and a hidden size of 256.

In the teacher-forcing training process, we add
a mask when calculating the multi-head self-
attention across different modalities. By mask-
ing out all the future views in the ground-truth
trajectory, the current view vt is only allowed
to refer to the full instructions and all the previ-
ous views that the agent has passed by, which is
[hs1,h

s
2, . . . ,h

s
M ;hv1,h

v
2, . . . ,h

v
t−1], where M de-

notes the maximum sentence number.
Since the Transformer architecture is based

solely on attention mechanism and thus contains
no recurrence or convolution, we need to inject ad-
ditional information about the relative or absolute
position of the features in the input sequence. We
add a learned segment embedding to every input
feature vector specifying whether it belongs to the
sentence encodings or the view encodings. We also
add a learned position embedding to indicate the
relative position of the sentences in the instruction
sequence or the trajectory sequence’s views.

Action Predictor The action predictor is a fully-
connected layer. It takes the concatenation of the
cross-modal encoder’s output up to the current
timestamp t as input, and predicts the action at
for view vt:

hconcat = hs1|| . . . ||hsM ||hv1|| . . . ||hvt (9)

at = argmax(FC(T (hconcat))) (10)

where FC is a fully-connected layer in the action
predictor, and T refers to the Transformer opera-
tion in the cross-modal encoder. During training,
we use the cross-entropy loss for optimization.

4 Experiments

4.1 Datasets
Outdoor VLN Dataset For the outdoor VLN
task, we conduct experiments on the Touchdown
dataset (Chen et al., 2019; Mehta et al., 2020),
which is designed for navigation in realistic ur-
ban environments. Based on Google Street View3,
Touchdown’s navigation environment encompasses

3https://developers.google.com/maps/
documentation/streetview/intro

29,641 Street View panoramas of the Manhattan
area in New York City, which are connected by
61,319 undirected edges. The dataset contains
9,326 trajectories for the navigation task, and each
trajectory is paired with a human-written instruc-
tion. The training set consists of 6,526 samples,
while the development set and the test set are made
up of 1,391 and 1,409 samples, respectively.

External Resource We use the StreetLearn
dataset as the external resource for the outdoor
VLN task (Mirowski et al., 2018). The StreetLearn
dataset is another dataset for navigation in real-
life urban environments based on Google Street
View. StreetLearn contains 114k panoramas from
New York City and Pittsburgh. In the StreetLearn
navigation environment, the graph for New York
City contains 56k nodes and 115k edges, while the
graph for Pittsburgh contains 57k nodes and 118k
edges. The StreetLearn dataset contains 580k sam-
ples in the Manhattan area and 8k samples in the
Pittsburgh area for navigation.

While the StreetLearn dataset’s trajectory con-
tains more panorama along the way on average, the
paired instructions are shorter than the Touchdown
dataset. We extract a sub-dataset Manh-50 from
the original large scale StreetLearn dataset for the
convenience of conducting experiments. Manh-50
consists of navigation samples in the Manhattan
area that contains no more than 50 panoramas in
the whole trajectory, containing 31k training sam-
ples. We generate style-transferred instructions for
the Manh-50 dataset, which serves as an auxiliary
dataset, and will be used to pre-train the navigation
models. More details can be found in the appendix.

4.2 Evaluation Metrics

We use the following metrics to evaluate VLN per-
formance: (1) Task Completion (TC): the accuracy
of completing the navigation task correctly. Fol-
lowing Chen et al. (2019), the navigation result is
considered correct if the agent reaches the specific
goal or one of the adjacent nodes in the environ-
ment graph. (2) Shortest-Path Distance (SPD): the
mean distance between the agent’s final position
and the goal position in the environment graph.
(3) Success weighted by Edit Distance (SED): the
normalized Levenshtein edit distance between the
path predicted by the agent and the reference path,
which is constrained only to the successful naviga-
tion. (4) Coverage weighted by Length Score (CLS):
a measurement of the fidelity of the agent’s path

https://developers.google.com/maps/documentation/streetview/intro
https://developers.google.com/maps/documentation/streetview/intro


with regard to the reference path. (5) Normalized
Dynamic Time Warping (nDTW): the minimized cu-
mulative distance between the predicted path and
the reference path, normalized by the reciprocal of
the square root of the reference path length. The
value is rescaled by taking the negative exponen-
tial of the normalized value. (6) Success weighted
Dynamic Time Warping (SDTW): the nDTW value
where the summation is only over the successful
navigation.

TC, SPD, and SED are defined by Chen et al.
(2019). CLS is defined by Jain et al. (2019). nDTW
and SDTW are originally defined by Ilharco et al.
(2019), in which nDTW is normalized by the length
of the reference path. We adjust the normalizing
factor to be the reciprocal of the square root of the
reference path length for length invariance (Mueen
and Keogh, 2016). In case the reference trajectories
length has a salient variance, our modification to
the normalizing factor made the nDTW and SDTW
scores invariant to the reference length.

4.3 Results and Analysis

In this section, we report the outdoor VLN perfor-
mance and the quality of the generated instructions
to validate the effectiveness of our MTST learn-
ing approach. We compare our VLN Transformer
with the baseline model and discuss the influence
of pre-training on external resources with/without
instruction style transfer.

Outdoor VLN Performance We compare our
VLN Transformer with RCONCAT (Chen et al.,
2019; Mirowski et al., 2018) and GA (Chen et al.,
2019; Chaplot et al., 2018) as baseline models.
Both baseline models encode the trajectory and
the instruction in an LSTM-based manner and use
supervised training with Hogwild! (Recht et al.,
2011). Table 2 presents the navigation results on
the Touchdown validation and test sets, where VLN
Transformer performs better than RCONCAT and
GA on most metrics with the exception of SPD and
CLS.

Pre-training the navigation models on Manh-50
with template-based instructions can partially im-
prove navigation performance. For all three agent
models, the scores related to successful cases—
such as TC, SED, and SDTW—witness a boost
after being pre-trained on vanilla Manh-50. How-
ever, the instruction style difference between Manh-
50 and Touchdown might misguide the agent in the
pre-training stage, resulting in a performance drop

on SPD for our VLN Transformer model.
In contrast, our MTST learning approach can bet-

ter utilize external resources and further improve
navigation performance. Pre-training on Manh-50
with style-modified instructions can stably improve
the navigation performance on all the metrics for
both the RCONCAT model and the VLN Trans-
former. This also indicates that our MTST learning
approach is model-agnostic.

Table 4 compares the SPD values on success
and failure navigation cases. In the success cases,
VLN Transformer has better SPD scores, which is
aligned with the best SED results in Table 2. Our
model’s inferior SPD results are caused by taking
longer paths in failure cases, which also harms the
fidelity of the generated path and lowers the CLS
scores. Nevertheless, every coin has two sides, and
exploring more areas when getting lost might not
be a complete bad behavior for the navigation agent.
We leave this to future study.

Multimodal Text Style Transfer in VLN We at-
tempt to reveal each component’s effect in the mul-
timodal text style transfer model. We pre-train the
VLN Transformer with external trajectories and
instructions generated by different models, then
fine-tune it on the TouchDown dataset.

According to the navigation results in Table 3,
the instructions generated by the Speaker model
misguide the navigation agent, indicating that rely-
ing solely on the Speaker model cannot reduce the
gap between different instruction styles. Adding
textual attention to the Speaker model can slightly
improve the navigation results, but still hinders
the agent from navigating correctly. The style-
modified instructions improve the agent’s perfor-
mance on all the navigation metrics, suggesting
that our Multimodal Text Style Transfer learning
approach can assist the outdoor VLN task.

Quality of the Generated Instruction We eval-
uate the quality of instructions generated by the
Speaker and the MTST model. We utilize five
automatic metrics for natural language gener-
ation to evaluate the quality of the generated
instructions, including BLEU (Papineni et al.,
2002), ROUGE (Lin, 2004), METEOR (Elliott and
Keller, 2013), CIDEr (Vedantam et al., 2015) and
SPICE (Anderson et al., 2016). In addition, we
calculate the guiding signal match rate (MR) by
comparing the appearance of “turn left” and “turn
right”. If the generated instruction contains the



Model
Dev Set Test Set

TC ↑ SPD ↓ SED ↑ CLS ↑ nDTW ↑ SDTW ↑ TC ↑ SPD ↓ SED ↑ CLS ↑ nDTW ↑ SDTW ↑

RCONCAT 10.6 20.4 10.3 48.1 22.5 9.8 11.8 20.4 11.5 47.9 22.9 11.1
+M-50 11.8 19.1 11.4 48.7 23.1 10.9 12.1 19.4 11.8 49.4 24.0 11.3
+M-50 +style 11.9 19.9 11.5 48.9 23.8 11.1 12.6 20.4 12.3 48.0 23.9 11.8

GA 12.0 18.7 11.6 51.9 25.2 11.1 11.9 19.0 11.5 51.6 24.9 10.9
+M-50 12.3 18.5 11.8 53.7 26.2 11.3 13.1 18.4 12.8 54.2 26.8 12.1
+M-50 +style 12.9 18.5 12.5 52.8 26.3 11.9 13.9 18.4 13.5 53.5 27.5 12.9

VLN Transformer 14.0 21.5 13.6 44.0 23.0 12.9 14.9 21.2 14.6 45.4 25.3 14.0
+M-50 14.6 22.3 14.1 45.6 25.0 13.4 15.5 21.9 15.4 45.9 26.1 14.2
+M-50 +style 15.0 20.3 14.7 50.1 27.0 14.2 16.2 20.8 15.7 50.5 27.8 15.0

Table 2: Navigation results on the outdoor VLN task. +M-50 denotes pre-training with vanilla Manh-50 which
contains machine-generated instructions; in the +style setting, the model is pre-trained with Manh-50 trajectories
and style-modified instructions that are generated by our MTST model.

Model
Dev Set Test Set

TC ↑ SPD ↓ SED ↑ CLS ↑ nDTW ↑ SDTW ↑ TC ↑ SPD ↓ SED ↑ CLS ↑ nDTW ↑ SDTW ↑

VLN Transformer +M-50 14.6 22.3 14.1 45.6 25.0 13.4 15.5 21.9 15.4 45.9 26.1 14.2
+speaker 7.6 26.2 7.3 34.6 14.6 7.0 8.3 25.4 8.0 36.3 15.9 7.7
+text_attn 11.7 20.1 11.3 46.3 23.2 10.7 11.8 20.5 11.5 47.3 23.2 11.0
+style 15.0 20.3 14.7 50.1 27.0 14.2 16.2 20.8 15.7 50.5 27.8 15.0

Table 3: Ablation study of the multimodal text style transfer model on the outdoor VLN task. In the +speaker
setting, the instructions used in pre-training are generated by the Speaker (Fried et al., 2018), which only attends
to the visual input; +text_attn denotes that we add a textual attention module to the Speaker to attend to both the
visual input and the machine-generated instructions provided by Google Maps API.

Model
Dev Set Test Set

S_SPD↓ F_SPD↓ S_SPD↓ F_SPD↓

RCONCAT 0.64 22.68 0.67 23.06
+M-50 0.68 21.53 0.69 21.97
+M-50 +style 0.66 22.48 0.69 23.21

GA 0.65 21.15 0.66 21.41
+M-50 0.70 20.95 0.77 21.09
+M-50 +style 0.65 21.11 0.70 21.26

VLN Transformer 0.66 24.92 0.63 24.84
+M-50 0.67 25.94 0.63 25.77
+M-50 +style 0.59 23.72 0.62 24.67

Table 4: S_SPD and F_SPD denotes the average SPD
value on success and failure cases respectively.

same number of guiding signals in the same order
as the ground truth instruction, then this instruction
pair is considered to be matched. We also calculate
the number of different infilled tokens (#infill) in
the generated instruction4. This reflects the model’s
ability to inject object-related information during
style transferring. Among the 9,326 trajectories in
the Touchdown dataset, 9,000 are used to train the
MTST model, while the rest form the validation
set.

4We regard tokens with the following part-of-speech tags
as infilled tokens: [JJ, JJR, JJS, NN, NNS, NNP, NNPS, PDT,
POS, RB, RBR, RBS, PRP$, PRP, MD, CD]

Model BLEU METEOR ROUGE_L CIDEr SPICE MR #infill

Speaker 15.1 20.6 22.2 1.4 20.7 8.3 160
Text_Attn 23.8 23.3 29.6 10.0 24.6 35.7 182
MTST 30.6 28.8 39.7 27.8 30.6 46.7 308

Table 5: Quantitative evaluation of the instructions gen-
erated by Speaker, Speaker with textual attention and
our MTST model.

We report the quantitative results on the valida-
tion set in Table 5. After adding textual attention
to the Speaker, the evaluation performance on all
seven metrics improved. Our MTST model scores
the highest on all seven metrics, which indicates
that the “masking-and-recovering” scheme is ben-
eficial for the multimodal text style transfer pro-
cess. The results validate that the MTST model can
generate higher quality instructions, which refers
to more visual objects and provide more matched
guiding signals.

Human Evaluation We invite human judges on
Amazon Mechanical Turk to evaluate the quality of
the instructions generated by different models. We
conduct a pairwise comparison, which covers 170
pairs of instructions generated by Speaker, Speaker
with textual attention, and our MTST model. The
instruction pairs are sampled from the Touchdown



Choice (%)
MTST vs Speaker MTST vs Text_Attn Speaker vs Text_Attn

MTST Speaker Tie MTST Text_Attn Tie Speaker Text_Attn Tie

Better describes the street view 67.9 22.8 9.3 44.3 35.8 19.9 28.2 62.7 9.1
More aligned with the ground truth 64.6 26.8 8.6 37.6 33.9 28.5 25.3 62.5 12.2

Table 6: Human evaluation results of the instructions generated by Speaker, Speaker with textual attention and our
MTST model with pairwise comparisons.

validation set. Each pair of instructions, together
with the ground truth instruction and the gif that
illustrates the navigation street view, is presented
to 5 annotators. The annotators are asked to make
decisions from the aspect of guiding signal correct-
ness and instruction content alignment. Results in
Table 6 show that annotators think the instructions
generated by our MTST model better describe the
street view and is more aligned with the ground-
truth instructions.

Case Study We demonstrate case study results to
illustrate the performance of our Multimodal Text
Style Transfer learning approach. Fig. 5 provides
two showcases of the instruction generation results.
As listed in the charts, the instructions generated
by the vanilla Speaker model have a poor perfor-
mance in keeping the guiding signals in the ground
truth instructions and suffer from hallucinations,
which refers to objects that have not appeared in
the trajectory. The Speaker with textual attention
can provide guidance direction. However, the in-
structions generated in this manner does not utilize
the rich visual information in the trajectory. On
the other hand, the instructions generated by our
multimodal text style transfer model inject more
object-related information (“the light", “scaffold-
ing") in the surrounding navigation environment
to the StreetLearn instruction while keeping the
correct guiding signals.

5 Conclusion

In this paper, we proposed the Multimodal Text
Style Transfer learning approach for outdoor VLN.
This learning framework allows us to utilize out-
of-domain navigation samples in outdoor environ-
ments and enrich the original navigation reasoning
training process. Experimental results show that
our MTST approach is model-agnostic, and our
MTST learning approach outperforms the baseline
models on the outdoor VLN task. We believe our
study provides a possible solution to mitigate the
data scarcity issue in the outdoor VLN task. In
future studies, we would love to explore the pos-

StreetLearn Turn right onto W 36th St. Turn right onto Dyer Ave.

Original Speaker
Go to the next intersection and turn left again. There will 
be a building with a red awning on your right. Go straight 
through the next intersection.

Speaker with 
Textual Attention

Turn right at the next intersection. Stop just before the 
next intersection.

Multimodal Text 
Style Transfer

Turn right again at the next intersection. On your right will 
be scaffolding on your right. Turn right.

StreetLearn Head northwest on W 35th St toward Hudson Blvd E. 
Turn right at the 1st cross street onto Hudson Blvd E.

Original Speaker
Turn so the red construction is on your left and the red 
brick building is on your right. Go forward to the 
intersection and turn right. You'll have a red brick building 
with a red awning on your right.

Speaker with 
Textual Attention

Head in the direction of traffic. Turn right at the first 
intersection.

Multimodal Text 
Style Transfer

Move forward with traffic on the right turn right at 

the light. Continue straight.

Figure 5: Two showcases of the instruction generation
results. The red tokens indicate incorrectly generated
instructions, while the blue tokens suggest alignments
with the ground truth. The orange bounding boxes
show that the objects in the surrounding environment
have been successfully injected into the style-modified
instruction.

sibility of constructing an end-to-end framework.
We will also further improve the quality of style-
modified instructions, and quantitatively evaluate
the alignment between the trajectory and the style-
transferred instructions.
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A Appendix

A.1 Dataset Comparison

Dataset #path #pano #pano/path instr_len #sent/path #turn/path

Touchdown 6k 26k 35.2 80.5 6.3 2.8

Manh-50 31k 43k 37.2 22.1 2.8 4.1

StreetLearn 580k 114k 29.0 28.6 4.0 13.2

Table 7: Dataset statistics. path: navigation path; pano:
panorama; instr_len: average instruction length; sent:
sentence; turn: intersection on the path.

Table 7 lists out the statistical information of the
datasets used in pre-training and fine-tuning. Even
though the Touchdown dataset and the StreetLearn
dataset are built upon Google Street View, and both
of them contain urban environments in New York
City, pre-training the model with the VLN task on
the StreetLearn dataset does not raise a threat of
test data leaking. This is due to several causes:

First, the instructions in the two datasets are dis-
tinct in styles. The instructions in the StreetLearn
dataset is generated by Google Maps API, which is
template-based and focuses on street names. How-
ever, the instructions in the Touchdown dataset
are created by human annotators and emphasize
the visual environment’s attributes as navigational
cues. Moreover, as reported by Mehta et al. (2020),
the panoramas in the two datasets have little over-
laps. In addition, Touchdown instructions con-
stantly refer to transient objects such as cars and
bikes, which might not appear in a panorama from
a different time. The different granularity of the
panorama spacing also leads to distinct panorama
distributions of the two datasets.

A.2 Training Details

We use Adam optimizer (Kingma and Ba, 2015)
to optimize all the parameters. During pre-training
on the StreetLearn dataset, the learning rate for
the RCONCAT model, GA model, and the VLN
Transformer is 2.5 × 10−4. We fine-tune BERT
separately with a learning rate of 1 × 10−5. We
pre-train RCONCAT and GA for 15 epochs and
pre-train the VLN Transformer for 25 epochs.

When training or fine-tuning on the Touchdown
dataset, the learning rate for RCONCAT and GA is
2.5×10−4. For the VLN Transformer, the learning
rate to fine-tune BERT is initially set to 1× 10−5,
while the learning rate for other parameters in the
model is initialized to be 2.5× 10−4. The learning
rate for VLN Transformer will decay. The batch

size for RCONCAT and GA is 64, while the VLN
Transformer uses a batch size of 30 during training.

Model TC ↑ SPD ↓ SED ↑ CLS ↑ nDTW ↑ SDTW ↑

no split 9.6 21.8 9.3 46.1 20.0 8.7
split 13.6 20.5 13.1 47.6 24.0 12.6

Table 8: Ablation results of the VLN Transformer’s in-
struction split on Touchdown dev set. In split setting,
the instruction is split into multiple sentences before be-
ing encoded by the instruction encoder, while no split
setting encodes the whole instruction without splitting.

A.3 Split Instructions vs. No Split
We compare VLN Transformer performance with
and without splitting the instructions into sentences
during encoding. Results in Table 8 show that
breaking the instructions into multiple sentences
allows the visual views and the guiding signals
in sub-instructions to attend to each other during
cross-modal encoding fully. Such cross-modal
alignments lead to betters navigation performance.

A.4 Amazon Mechanical Turk
We use AMT for human evaluation when evalu-
ating the quality of the instructions generated by
different models. The survey form for head-to-head
comparisons is shown in Figure 6.



Figure 6: Pairwise comparison form for human evaluation on AMT.


