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Abstract
Few-shot learning is to recognize novel classes
with a few labeled samples per class. Al-
though numerous meta-learning methods have
made significant progress, they struggle to di-
rectly address the heterogeneity of training and
evaluating task distributions, resulting in the
domain shift problem when transitioning to
new tasks with disjoint spaces. In this pa-
per, we propose a novel method to deal with
the heterogeneity. Specifically, by simulating
class-difference domain shift during the meta-
train phase, a bilevel optimization procedure
is applied to learn a transferable representation
space that can rapidly adapt to heterogeneous
tasks. Experiments demonstrate the effective-
ness of our proposed method.

1 Introduction

Deep learning methods are now widely used in
diverse applications. However, their efficacy is
largely contingent on a large amount of labelled
data in the target task and domain of interest
(Vaswani et al., 2017). Different from humans that
can easily learn to accomplish new tasks with a few
examples, it is difficult for machines to rapidly gen-
eralize to new concepts with very little supervision,
which calls considerable attention to the challeng-
ing few-shot learning (FSL) setting. For example,
few-shot classification problem requires models
to classify unlabeled samples into novel classes
with only a few labeled samples available for train-
ing (Finn et al., 2017). Commonly understood as
learning to learn, meta-learning paradigm has made
significant progress in FSL by transferring knowl-
edge extracted from a collection of previous tasks
(Vinyals et al., 2016; Snell et al., 2017). Such task-
agnostic knowledge can contribute to the current
testing task with optimizing learning algorithms.
However, beyond its recent achievements, meta-
learning still faces the problem of generalization.

In contrast to supervised machine learning meth-
ods which assume that training and testing data are

sampled i.i.d. from the same distribution, FSL aims
to learn to address tasks from different distributions
with limited data. This refers to the realistic sce-
nario that the label spaces of future testing tasks
can not be obtained in advance and are often dis-
joint with the label spaces of training tasks. In
experiments, this is actualized by splitting all cat-
egories in the dataset into non-overlapping base
classes and novel classes, while training tasks are
sampled from base classes and testing tasks are
samples from novel classes. Therefore, due to the
class label difference, meta-learning approaches
suffer from natural heterogeneous distributions of
tasks. As each task can be regarded as having a
separate domain, it can be considered as a special
case of domain shift that is extremely serious when
a large gap of semantic relationship exists between
base classes and novel classes.

As most of the current meta-learning approaches
make a strong assumption that training tasks and
testing tasks are drawn from the similar distribu-
tions and share the same characteristics, (Chen
et al., 2019) has shown the limitations of existing
approaches in cross-domain FSL scenarios where
base classes and novel classes are from different
datasets. However, few works have focused on
this issue to improve existing approaches. For ex-
ample, as a representative work of metric-based
meta-learning, Prototypical Network (Snell et al.,
2017) learns a metric space where embeddings of
query samples in one class are close to the cen-
troid of support samples in the same class, and far
from centroids of other classes in the task. While
Prototypical Network benefits from a simple but
effective inductive bias, it lacks adaptation to new
tasks or domains.

In this paper, we propose to improve such metric-
based approaches with a bilevel optimization pro-
cedure. Specifically, we simulate class-difference-
caused domain shift during meta-training by si-
multaneously sampling multiple tasks with non-



Figure 1: Overview of our proposed Meta-ProtoNet.

overlapping class sets. Each time one of the tasks
is prepared as the target task for outer level opti-
mization and the others are first used as the source
tasks for inner level optimization of the network.
Following this training strategy during the meta-
train phase, the model can better adapt to the test-
ing tasks from heterogeneous distributions with an
adaptation step.

Moreover, different from some usual options of
inner objective, we use Shannon entropy as an unsu-
pervised factorization loss to constrain the learned
representations as near-binary codes (Chang et al.,
2019). This can be viewed as learning a discrimi-
native latent factor space for each task where each
factor can be interpreted as a latent attribute that is
corresponding to abstract visual concepts.

To summarize, our main contributions are :1)
considering the challenge of heterogeneous task
distributions faced by few-shot learning, we simu-
late the class-difference-caused domain shift in the
meta-train phase, and devise a metric-based meta-
learning approach integrated with a bilevel opti-
mization for better generalization; 2) we propose
to utilize an unsupervised factorization loss as the
inner objective, making representations to be near-
binary codes that reduce the difficulty of classifier
learning. Meanwhile, due to the bilevel optimiza-
tion between heterogeneous few-shot tasks during
meta-training, the model can rapidly learn the rep-
resentation space for testing tasks; 3) We conduct
extensive experiments and analysis to demonstrate
that our approach effectively improves the perfor-
mance and interpretability under both conventional
and cross-domain few-shot settings without intro-
ducing additional architectures, and thus it can be
regarded as a better baseline.

2 Methodology

2.1 Prototypical Network.

As a simple but effective model for FSL learning,
Prototypical Network (ProtoNet) (Snell et al., 2017)
use an embedding function fθ with parameters θ

to encode each sample into a representation vector.
For each class c in the class set C of the task T , a
prototype vector pc is defined as the mean vector of
the embedded support samples in the class, which
can be expressed as pc = 1

|Sc|
∑

(xi,yi)∈Sc fθ (xi) .
When inferring, the probability over classes for
a query sample xi is a softmax over the inverse
of squared Euclidean distances between the query
representation and prototype vectors, expressed

as Pθ (yi = c | xi) =
exp(−‖fθ(xi)−pc‖2)∑

c′∈C exp(−‖fθ(xi)−pc′‖
2)
.

The classification loss is the sum of negative log-
probability of each query sample in task T with
its ground-truth class label: Lclassification (θ) =
−
∑

c∈C
∑

xi∈Qc logPθ (yi = c | xi) .

2.2 Learning Latent Factors

As the embedding function fθ of Prototypical Net-
work can be any deep neural network, it is often
organized as a convolutional neural network (CNN)
for image classification tasks. In our MetaPro-
toNet, we set the activation function of the last
layer to Sigmoid function σ(x) = 1

1+exp(−x) in-
stead of the most commonly used ReLU function.
This limits the scale of the learned representations
fθ (xi) ∈ (0, 1)d, where d denotes the dimension
number of the representations. Deep architectures
are capable of learning to extract useful infor ma-
tion from the samples, and potentially construct
representations as the composition of the local ab-
stract concepts that are useful for downstream tasks.
Therefore, Sigmoid activated outputs of fθ can be
viewed as multi-label predictions on latent factors,
as the activation of each dimension closer to 0 or
1 can be interpreted as the corresponding visual at-
tributes being present and absent. Moreover, Meta-
ProtoNet constrains the learned representations to
become near-binary codes by applying Shannon
entropy as an unsupervised factorization loss, ex-
pressed as

Lfactorization (θ) = −
∑

xi∈{S,Q}

〈fθ (xi) , log (fθ (xi))〉

(1)
where log(·) is applied element-wise, and 〈·, ·〉
denotes the vector inner product operation. This
not only encourages the representations to become
more interpretable but also decreases the uncer-
tainty of latent factors discovery.



2.3 Training Meta-ProtoNet

According to (Snell et al., 2017), Prototypical Net-
work can be re-interpreted as a linear classifier that
is applied to the representations learned by the non-
linear embedding function. With the improvement
above, near-binary representations generated by the
embedding function are expected to be preferable
for the jointly learned linear classifier without sac-
rificing representation power and differentiable op-
timization for exactly binary codes (Li et al., 2017).
However, it would result in a suboptimal represen-
tation space for heterogeneous testing tasks since
the metric-based approach is no longer updated to
adapt to new domains in the meta-test phase. To
overcome the approaching domain shift problem,
we devise a bilevel optimization procedure for a
fast adaptation to the feature distribution in the new
task.

Specifically, instead of randomly sampling a
single task, we simultaneously sample m tasks
Tset = {T1, · · · , Tm} without class overlap from
the distribution over training tasks p

(
T tr
)

in the
metatrain stage. For each task in Tset , we first de-
note it as the target task Tt and obtain a copy of
the model parameters θ as θ′, then θ′ is updated by
minimizing the factorization loss over each task Ts
in the source tasks Tset −Tt. Each update of θ′ can
be expressed as

θ′ = θ′ − α∇θ′Lfactorization
(
θ′
)

(2)

where α is the inner learning rate. This is viewed
as the inner level of the bilevel optimization proce-
dure, and after all of Ts are used for the update of
θ′, we utilize Tt to optimize the model. Specifically,
the model parameters θ are updated as follows:

θ = θ − β∇θLoverall (θ′) (3)

where β is the outer learning rate. The meta-
optimization is performed over the model param-
eters θ, whereas the objective Loverall (θ′) is com-
puted using the updated model parameters θ′ and
can be expressed as

Loverall (θ′) = Lclassification (θ′)+γLfactorization (θ′)
(4)

where γ is the trade-off hyperparameter. The key
idea underlying the algorithm is that to alleviate
the class-difference-caused domain shift, the task-
specific knowledge including semantic information
of categories is decomposed into reusable low-level

task-agnostic knowledge by transferring latent fac-
tors across heterogeneous tasks. Each round of
bilevel optimization can be viewed as a simula-
tion of the whole process including meta-train and
meta-test: In the inner level (corresponding to the
meta-train phase), we encourage the model to learn
to generate latent factors for tasks drawn from the
source distribution. As high performance of classi-
fication on these tasks is not necessary and may be
detrimental to the classification of heterogeneous
target tasks, the inner objective only aims to dis-
cover latent factors and does not include classifica-
tion loss. Moreover, we expect the learned latent
factor space to be transferable, and thus the learn-
ing process of the source tasks can promote the
learning of heterogeneous tasks. Therefore, in the
outer level (corresponding to the meta-test phase),
the model is optimized with the overall loss includ-
ing classification loss and factorization loss.

2.4 Testing Meta-ProtoNet

In the meta-test phase, when adapting to each new
testing task Tj , the trained parameters θ are updated
to θ′ using only one gradient descent step with
the factorization loss over Tj . Therefore, a task-
specific latent factor space of Tj is learned. The
evaluation metric (i.e., the classification accuracy)
is calculated with the updated parameters θ′.

3 Experiments

Datasets. In this paper, we address the few-shot
classification problem under both conventional and
cross-domain FSL settings. These settings are
conducted on three benchmark datasets: miniIma-
geNet (Vinyals et al., 2016), Caltech-UCSD-Birds
200-2011 (CUB) (Wah et al., 2011), and SUN At-
tribute Database (SUN) (Patterson et al., 2014).
Experimental Settings. We conduct experiments
on 5-way 1-shot and 5-way 5-shot settings, there
are 15 query samples per class in each task. We
report the average accuracy (%) and the correspond-
ing 95% confidence interval over the 2000 tasks
randomly sampled from novel classes. To fairly
evaluate the original performance of each method,
we use the same 4-layer ConvNet (Vinyals et al.,
2016) as the backbone for all methods and do not
adopt any data augmentation during training. All
methods are trained via SGD with Adam (Kingma
and Ba, 2014), and the initial learning rate is set
to e−3. For each method, models are trained for
40,000 tasks at most, and the best model on the vali-



Method
miniImageNet→ CUB miniImageNet→ SUN CUB→ miniImageNet

5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot
Meta-Learner LSTM 23.77 30.58 25.52 32.14 22.58 28.18

MAML 40.29 53.01 46.07 59.08 33.36 41.58
Reptile 24.66 40.86 32.15 50.38 24.56 40.60

Matching Network 38.34 47.64 39.58 53.20 26.23 32.90
Prototypical Network 36.60 54.36 46.31 66.21 29.22 38.73

Relation Network 39.33 50.64 44.55 61.45 28.64 38.01
Baseline 24.16 32.73 25.49 37.15 22.98 28.41

Baseline++ 29.40 40.48 30.44 41.71 23.41 25.82
Meta-ProtoNet 40.61 56.12 49.38 68.80 33.58 43.83

Table 1: Average accuracy (%) comparison to state-of-the-arts with 95% confidence intervals on 5-way classifica-
tion tasks under the cross-domain FSL setting. Best results are displayed in boldface.

Method
miniImageNet CUB SUN

5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot
Meta-Learner LSTM 24.99 29.79 36.23 44.39 30.99 44.86

MAML 45.69 60.90 48.87 63.99 57.75 71.45
Reptile 26.59 39.87 27.21 42.35 28.30 51.62

Matching Network 47.63 56.28 53.06 62.19 55.02 62.57
Prototypical Network 46.15 65.56 48.21 57.80 55.70 67.32

Relation Network 47.64 63.65 52.76 64.71 58.29 72.15
Baseline 23.84 32.09 25.14 35.35 27.44 34.54

Baseline++ 30.15 41.19 32.48 42.43 35.56 44.42
Meta-ProtoNet 47.87 66.05 53.30 65.37 58.79 73.90

Table 2: Average accuracy (%) comparison to state-of-the-arts with 95% confidence intervals on 5-way classifica-
tion tasks under the conventional FSL setting. Best results are displayed in boldface.

dation classes is used to evaluate the final reporting
performance in the meta-test phase.

Evaluation Using the Conventional Setting. Ta-
ble 1 shows the comparative results under the con-
ventional FSL setting on three benchmark datasets.
It is observed that Meta-ProtoNet outperforms the
original Prototypical Network in all conventional
FSL scenarios. For 1-shot and 5-shot on miniIma-
geNet→ miniImageNet, Meta-ProtoNet achieves
about 1% higher performance than Prototypical
Network. However, Meta-ProtoNet achieves 5%
and 10% higher performance for 1-shot and 5-shot
on CUB→ CUB, and 3% and 6% higher perfor-
mance on SUN → SUN. As the latter two sce-
narios are conducted on fine-grained classification
datasets, we attribute the promising improvement
to that the categories in these fine-grained datasets
share more local concepts than those in coarse-
grained datasets, and thus a more discriminative
space can be rapidly learned with a few steps of
adaptation. Moreover, Meta-ProtoNet achieves the
best performance among all baselines in all con-
ventional FSL scenarios, which shows that our ap-
proach can be considered as a better baseline option
under the conventional FSL setting.

Evaluation Using the Cross-Domain Setting.
We also conduct cross-domain FSL experiments

and report the comparative results in Table 2. Com-
pared to the results under the conventional setting,
it can be observed that all approaches suffer from
a larger discrepancy between the distributions of
training and testing tasks, which results in a per-
formance decline in all scenarios. However, Meta-
ProtoNet still outperforms the original Prototypical
Network in all cross-domain FSL scenarios, demon-
strating that the bilevel optimization strategy for
adaptation and the learning of transferable latent
factors can be utilized to improve simple metric-
based approaches. Also, Meta-ProtoNet achieves
all the best results, indicating that our approach
can be regarded as a promising baseline under the
cross-domain setting.

4 Conclusion

In this paper, we propose Meta-ProtoNet to handle
the challenge of heterogeneous task distributions in
few-shot scenarios, aiming to learn a latent factor
space in which metric-based classification of het-
erogeneous tasks can be better performed. Exten-
sive experiments show that our proposed approach
can be considered as a stronger baseline in both
conventional and cross-domain few-shot settings.
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